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Tilting of the crystal profile during directional solidification is studied numerically, when the crystalline axis
is misoriented from the temperature gradient and the pulling direction. Only with the anisotropy in surface
stiffness is the crystal shown to tilt to an anglef smaller than the misorientation of the crystalline axisc. The
anglef approachesc on increasing the pulling velocityV, as is often observed in experiments. TheV
dependence of the tiltingf thus does not necessarily mean that the tilting is caused by the kinetic effect. With
c545° we observe tip splitting and double fingers, a constituent of the compact seaweed pattern.
@S1063-651X~96!05907-7#

PACS number~s!: 81.10.Aj, 47.20.Hw, 82.40.Ck

I. INTRODUCTION

Pattern formation is an intensively studied subject in non-
linear and nonequilibrium statistical physics. Dendritic
growth is its typical example, and the anisotropy in the sur-
face free energy is shown to play an essential role in stabi-
lizing the dendrite tip when the dendrite is growing in the
free space@1–4#.

In contrast to the free dendrite, directional solidification is
performed under a temperature gradient. The average inter-
face lies normal to the gradient, but with a fast pulling rate
the interface undergoes various modulations as periodic ar-
rays of cells, cusps, and dendrites. Usually, the crystalline
axis is set parallel to the direction of the temperature gradient
and the pulling direction. The realized cellular patterns have
symmetry around the crystal axis. If the crystalline axis is
oriented differently from the temperature gradient, a tilted
cellular structure is observed in experiments@5–8#. In the
linear stability analysis, the anisotropy in the surface free
energy is shown to be irrelevant to the tilting and the aniso-
tropic kinetics is responsible for producing the effect@9,10#.
But since the neutral curve is very flat near the critical ve-
locity Vc , various modes couple nonlinearly even nearVc .
The anisotropy of the surface free energy may be relevant for
the fully nonlinear regime.

One of the authors has previously simulated the interface
deformation in the directional solidification numerically
when the orientation of the crystalline axis coincides with
that of the temperature gradient@11#. The interface takes a
periodic array of cellular structure near the supercritical bi-
furcation point. The tip of the cellular interface is quite
rounded and the whole profile is far from parabolic. The
interface becomes dendritic with a pointed tip only far from
the bifurcation point. This indicates that the free-energy an-
isotropy governs the interface shape for fast growth, whereas
the temperature gradient controls and stabilizes the cellular
structure for low growth rate or near the stability limit of the
planar interface. If the orientation of the interface tension is
different from that of the temperature gradient, the two tip-
stabilizing mechanisms may compete and lead to the tilting
of the periodic structure. This phenomenon is actually ob-
served by Akamatsuet al.by solving the time-dependent dif-
fusion equation on multiple lattices@7#. Here we study the

problem systematically by means of a boundary element
method @12# in a quasistationary approximation that is an
extension of the method used previously@11#. The method
cannot describe the full dynamics, but it is valid in the steady
state. The method is also free from the lattice anisotropy that
can be induced by the lattice grids to solve the diffusion
equation. We study the variation of the tilt anglef of the
crystal on increasing the anglec between the crystallo-
graphic orientation and the direction of the temperature gra-
dient.

II. MODEL AND SIMULATION METHOD

In the experiment of the directional solidification, the so-
lution is contained in a thin cell, called a Hele-Shaw cell, and
placed in a temperature gradient. The direction of the tem-
perature gradient is taken as thez axis. The cell is pulled in
the negative-z direction to the colder region with the velocity
V and thus the crystal grows with the same growth velocity
V.

The concentration of the solution is denoted byc` . Due
to the material conservation, the average concentration in the
solid should bec` in the steady growth situation. When the
interface deforms from the planar structure, the local concen-
tration cS(r ) on the solid side of the interface is different
from, but close to,c` . For an atomically rough interface
above the roughening temperature, the surface kinetics is
fast. With the approximation of an infinitely fast kinetics, the
local equilibrium at the interface is guaranteed. Then the
concentration at the liquid side of the interfacecL should be
as high ascS /k with the equilibrium segregation coefficient
k. The concentration difference in the liquid near and far
from the interface induces the diffusion flowJ52Dc¹c,
which transports the excess material expelled by the solidi-
fication:

vn~cL2cS!52Dc

]c

]n
. ~1!

Here vn is the normal growth rate andDc is a chemical
diffusion constant.
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When the solid is in equilibrium with the liquid with con-
centrationcL , the interface temperatureTS should be lower
than the melting temperature of the pure systemTM as

TS5TM~12g̃k!2mcL , ~2!

with the surface stiffnessg̃, the curvaturek, and the slope of
the liquid linem.

Due to the fast thermal diffusion, the temperature gradient
GT5dT/dz is well approximated to be constant and the tem-
perature profile is linear as

T~z!5TM2
mc̀

k
1GTz. ~3!

The origin of thez axis is so chosen to lie at the position of
the planar interface. The concentrationcL at the interface
z5z(x) is thus determined from Eqs.~2! and ~3! as

cL5
c`

k
2
TMg̃

m
k2

GT

m
z. ~4!

We normalize the field by the miscibility gap
Dc5c`(1/k21) in the dimensionless formu as

u~x,z,t !5
c2c`

Dc
. ~5!

The far field condition isu(z→`)50. The diffusion equa-
tions with boundary conditions at the interface are now writ-
ten as

]u

]t
5Dc¹

2u, ~6a!

uS512dk2
z

l T
, ~6b!

@k1~12k!uS#vn52Dc

]u

]n
. ~6c!

Here d5TMg̃/mDc is the capillary length and
l T5mDc/GT is the thermal length.

When the stiffnessg̃ is the smallest in thez direction, the
array is symmetric around thez axis. But when the crystal-
line axis is off from the pulling direction, the crystal profile
may tilt. Assume that the stiffnessg̃ is minimum in the ori-
entation with the anglec from thez axis, then the capillary
length takes the form

d5d0@12acos4~u2c!# ~7!

for an interface with its normal vector making an angleu to
thez axis. Here we assume fourfold symmetry in the surface
tension. As a result, the crystal tilts with an anglef and the
interface deformation drifts transversally with the velocity
vx5Vtanf. In the frame moving with the same velocity
v5(vx ,V) with the growth front, the diffusion equation is
written as

L̂u5
2

l D
tanf

]u

]x
1

2

l D

]u

]z
1¹2u5

1

Dc

]u

]t
50. ~8!

Here l D52Dc /V is the diffusion length. In the last equality
we use the quasistationary approximation such that the dif-
fusion field relaxes quickly compared to the interface defor-
mation.

The anglef of the crystal profile may differ from the
anglec of the crystalline axis. When the thermal gradient
provides the anisotropy necessary for the tip stability of the
cellular structure, the anglef would be small. When, on the
other hand, the surface free energy dominates, the anglef
would be close toc. We study the variation of the anglef
as a function of the pulling rateV.

Numerical simulation follows the previous boundary ele-
ment procedure@11,12#. The diffusion equation is trans-
formed in the integro-differential equation of the interface
G by means of the Green’s theorem as

E dG8g~r ,r 8!
]u~r 8!

]n
5E dG8h~r ,r 8!uS~r 8!. ~9!

Hereg is the Green’s function of the operatorL̂† adjoint to
L̂, defined in Eq.~8! as

L̂†g5¹2g2
2

l D
tanf

]g

]x
2

2

l D

]g

]z
52d~r2r 8!. ~10!

It is explicitly written as

g~r ,r 8!5
1

2p
expF2

1

l D
~Dz1Dxtanf!GK0S r

l Dcosf
D ,

~11!

with Dz5z2z8, Dx5x2x8, r5A(Dx)21(Dz)2, andK0
being the modified Bessel function of zeroth order. The in-
tegral kernelh is given as

h~r ,r 8!5
]g

]n8
2

2

l D
@nz81nx8tanf#g~r2r 8!2

1

2
d~r2r 8!.

~12!

When the interface becomes periodic with periodicityl,
it is sufficient to consider one period. By discretizing this one
period withN grid points, the integral equation~9! is trans-
formed into the matrix form as

(
m52`

`

(
j51

N

Gi j1mNqj5 (
m52`

`

(
j51

N

Hi j1mNuj , ~13!

wherem denotes the periodic images of the interface in con-
sideration. Hereuj and qj are the values of diffusion field
and its normal gradient at the interface on thej th grid point
and the matrixG andH are obtained by the integration of
g andh on a segment. The detailed procedure is described in
previous works@11,13#.

For a given profilez5z(x,t) under the given pulling rate
V and the tilt anglef, we can calculateG andH and also
the interface values ofuj from the local equilibrium condi-
tion Eq.~6b!. Then the matrix equation~13! is solved to give
the gradientq5]u/]n, which determines the local velocity
of the interface from the conservation condition Eq.~6c!.
The interface is advanced accordingly to a new profile. For a
directional solidification, the pulling rateV in thez direction
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is controlled externally. The transversal velocity
vx5Vtanf, on the other hand, should be determined self-
consistently.

We start the simulation by supposing that the frame has
some transversal velocityVtanf. After some time of simu-
lation the interface tilts and the tip of the cellular pattern
acquires some transversal velocity. The tip here means the
interface position with the maximum curvature near the top-
most part. Since the tip is fluctuating in every time step due
to the discreteness of grids and the inaccuracy of numerical
integration, we define the tilt angle of the tipf tip in a coarse-
grained sense. It is defined from the slope of two consecutive
tip positions after a sufficiently long time intervaldt:

f tip5tan21
y~ t1dt!2y~ t !

x~ t1dt!2x~ t !
. ~14!

Then the anglef of the moving frame is relaxed tof tip as

f~ t1dt!5f~ t !2
dt

t
@f~ t !2f tip#, ~15!

with the appropriate relaxation timet @14#. In the stationary
state in which we are interested, tilt anglef should remain
constant and it agrees withf tip .

III. SIMULATION RESULTS

We have chosen the same parameter sets that have been
used previously to simulate steel with impurities of Cr and
Ni @11,13#. The equilibrium segregation coefficient is
k50.9. The length and time units are chosen such that the
thermal length is unityl T51 and the chemical diffusivity is
unity Dc51. The capillary length is thend052.9531024.

The anisotropy in the surface stiffness is assumed to be
a50.1. The critical growth rate is calculated to be
Vc51.14, with the critical wavelengthlc52p/qc50.5. The
simulated system is assumed to have periodicityl50.36, as
was done previously@11#. In fact, in the previous simulation
we assumed that the interface takes an array of symmetric
fingers and mirror images are imposed at both boundaries to
simulate only a half period to save CPU time. In the present
simulation we want to realize tilted fingers and the whole
period is necessary with periodic boundary conditions.

Starting from a sinusoidally modulated interface, we first

FIG. 1. Time evolution of a symmetric pattern of an interface
with a crystalline axis oriented to the pulling directionz. The pull-
ing velocity isV/Vc56.72.

FIG. 2. ~a! Initial transient of the time evolution of a tilted
crystal with the line representing the tip trajectory. The crystalline
axis is orientedc517° off from thez axis, whereas the profile tilts
only f58.8°. The pulling rate isV/Vc53.50. ~b! Temporal relax-
ation of the tilt anglef of the frame that is related to the transversal
velocity vx5Vtanf of the moving frame.
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simulate the symmetric finger with a crystalline axis lying
parallel to the pulling directionc50. The profile of the pre-
vious simulations is reproduced even with the different
boundary conditions. Figure 1 shows an example of the time
development of cuspate fingers forV/Vc56.72. In the fol-
lowing figures we show two periods of the profile. The maxi-
mum grid spacing along the interface is chosen to be
dmax50.03, small enough compared to the tip radius
r50.12. From the final configuration of this finger, we start

the simulation of the tilted finger.

A. Tilt angle at various pulling rates

The orientationc of the crystalline axis with the mini-
mum surface stiffness is fixed to a constant value
c50.30 rad517°. We vary the pulling rateV and observed
the tilting of the interface profile. The initial transversal ve-
locity vx5Vtanf of the moving frame is given byf5c, but

FIG. 3. Steady profile of the interface at various velocities
V/Vc : ~a! 1.75,~b! 3.50,~c! 6.72,~d! 10.5, and~e! 17.5. The crys-
talline axis is oriented toc517°. The tip tilts to an anglef as~a!
4.3° ~b! 8.8°, ~c! 12.6°, ~d! 15.2°, and~e! 16.9°.
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the anglef is gradually relaxed to the tilt angle of the tip
f tip by Eq.~15!. By the insertion and rearrangement of mesh
points, a numerical fluctuation is induced locally, but on av-
erage the system reaches the steady state asymptotically at
all the pulling velocities studied, as shown in Fig. 2~b!. At
low velocities, the tilt anglef of the crystal is smaller than
the imposed anglec by the surface stiffness, as shown in the
profile evolution in Fig. 2~a!. The trajectory of the maximum
curvature point is almost parallel to the inclination of the
narrow groove. Therefore, the tilt angle of the crystalf can
be defined from the inclination of the groove in the steady-
state profile of the interface. The steady profiles of the inter-
face at different velocities are depicted in Fig. 3. On increas-
ing the velocity, fingers tilt steeper with stronger
asymmetries in the sidebranch structures: When the dendrite
tilts to the right, branches on the left-hand side have a larger

deformation than those on the right-hand side. The asymme-
try results because the left-hand side of the tip faces the open
space and the diffusion field in front is expected to vary
much, whereas the right-hand side is shielded by the tip itself
and the diffusion field varies little. The noise amplification
should thus be larger on the left-hand side than on the right.

The tilt anglef varies as a function of the pulling rate
V, as shown in Fig. 4. NearVc it increases almost paraboli-
cally to the velocity difference from the critical value
V2Vc and at a large pulling rate it reaches the orientation of
the crystalline axisc. Usually, large tilting at the large pull-
ing rate is interpreted as evidence of the kinetic mechanism
for tilting. The present simulation shows that the surface free
energy brings the same tendency thatf increases withV.

B. Tilt angle for various crystalline orientation

We now fix the pulling rate atV/Vc56.72 and vary the
tilting of the crystalline axisc. The tilt anglef of the profile
is shown in Fig. 5 as a function ofc. At small c, f is
almost linearly proportional toc, but soon the anglef be-
comes smaller thanc because the transversal motion of the
primary dendrite is suppressed by the neighboring dendrite.
Increasingc further, the sidebranches of the next dendrite
prevent the transversal shift of the primary dendrite, as
shown in Fig. 6~a!, and f decreases. Near the angle
c5p/4, the randomness of the sidebranch formation leads

FIG. 4. Ratio of the tilt anglef to the imposed crystalline tilting
c at various pulling ratesV/Vc . The crystalline axis is oriented to
c517°.

FIG. 5. Tilt anglef at various crystalline orientationsc. The
pulling velocity is fixed toV/Vc56.72.

FIG. 6. Steady profile of the interface at various orientations of
the crystalline axis:~a! c537° and~b! c545°. The pulling veloc-
ity is fixed atV/Vc56.72.
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the irregular meandering of the position of the maximum
curvature and the tilt anglef is not well defined. At
c5p/4545°, the interface normal to thez direction splits to
the left and right fingers, but both interfere strongly in our
small system and their tips split again irregularly, as shown
in Fig. 6~b!. Thus the system consists of an irregular arrange-
ment of double fingers with very narrow grooves. A similar
pattern was already obtained by Akamatsuet al. @7#.

IV. CONCLUSIONS AND DISCUSSION

From our simulation of directional solidification, the tilt-
ing of a crystalline axis with anisotropic surface stiffness
induces the tilting of the profile and the crystal grows in a

direction different from the pulling direction. The tilt angle
f is shown to become large on increasing the pulling rate
V, in agreement with the experimental observation@5–8#.
There are, however, some aspects different from the experi-
ment. In the ice experiment, the tilt anglef depends weakly
on c compared with our simulation for smallc @8#. These
discrepancies may be related to the kinetic effect, which is
planned to be studied in a separate paper.
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