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Simulation of unidirectional solidification with a tilted crystalline axis

Tomohiro Okada and Yukio Saito
Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
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Tilting of the crystal profile during directional solidification is studied numerically, when the crystalline axis
is misoriented from the temperature gradient and the pulling direction. Only with the anisotropy in surface
stiffness is the crystal shown to tilt to an anglesmaller than the misorientation of the crystalline axisThe
angle ¢ approaches/ on increasing the pulling velocity, as is often observed in experiments. THe
dependence of the tilting thus does not necessarily mean that the tilting is caused by the kinetic effect. With
=45° we observe tip spliting and double fingers, a constituent of the compact seaweed pattern.
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PACS numbg(s): 81.10.Aj, 47.20.Hw, 82.40.Ck

[. INTRODUCTION problem systematically by means of a boundary element
method[12] in a quasistationary approximation that is an

Pattern formation is an intensively studied subject in nonextension of the method used previouphi]. The method
linear and nonequilibrium statistical physics. Dendritic cannot describe the full dynamics, but it is valid in the steady
growth is its typical example, and the anisotropy in the surState. The method is also free from the lattice anisotropy that
face free energy is shown to play an essential role in stabican be induced by the lattice grids to solve the diffusion
lizing the dendrite tip when the dendrite is growing in the equation. We study the variation of the tilt angteof the
free spacg1—4]. crystal on increasing the anglg between the crystallo-

In contrast to the free dendrite, directional solidification isgraphic orientation and the direction of the temperature gra-
performed under a temperature gradient. The average integient.
face lies normal to the gradient, but with a fast pulling rate
the interface undergoes various modulations as periodic ar-
rays of cells, cusps, and dendrites. Usually, the crystalline Il. MODEL AND SIMULATION METHOD

axis is set parallel to the direction of the temperature gradient | the experiment of the directional solidification, the so-
and the pulling direction. The realized cellular patterns havgtion is contained in a thin cell, called a Hele-Shaw cell, and
symmetry around the crystal axis. If the crystalline axis iSpjaced in a temperature gradient. The direction of the tem-
oriented dlfferently from the tgmperatgre gradient, a t'ltedperature gradient is taken as thexis. The cell is pulled in
cellular structure is observed in experimef$s-8]. In the o negativez direction to the colder region with the velocity
linear stability analysis, the anisotropy in the surface fre&; anq thus the crystal grows with the same growth velocity
energy is shown to be irrelevant to the tilting and the anisoy,

tropic kinetics is responsible for producing the effgg10]. The concentration of the solution is denoteddy. Due

But since the neutral curve is very flat near the critical Ve~ the material conservation, the average concentration in the
locity V., various modes couple nonlinearly even near  q)iq should bec,, in the steady growth situation. When the
The anisotropy of the surface free energy may be relevant i rtace deforms from the planar structure, the local concen-

the fully nonlinear regime. . . ) tration cg(r) on the solid side of the interface is different
One of the authors has previously simulated the interfac@. ;)\ byt close toc. . For an atomically rough interface
deformation in the directional solidification numerically 4,0 the roughe'niorﬂé temperature, the surface kinetics is
v;/]hen fthﬁ orientation of the dprysltthan:e axis ;:omdes With¢ast. With the approximation of an infinitely fast kinetics, the
that of the temperature gra iefit1]. The interface takes a |5cq) equilibrium at the interface is guaranteed. Then the
periodic array of cellular structure near the supercritical bi-.j - oniration at the liquid side of the interfageshould be

furcation point. The tip of the cellular interface is quite ; ; S : .-
L . as high ascg/k with the equilibrium segregation coefficient
rounded and the whole profile is far from parabolic. Thek. The concentration difference in the liquid near and far

interface becomes dendritic with a pointed tip only far fromfrom the interface induces the diffusion flod= — D .Vc
the bifurcation point. This indicates that the free-energy ang, nich transports the excess material expelled by tche éolidi-
isotropy governs the interface shape for fast growth, Whereaﬁcation'

the temperature gradient controls and stabilizes the cellular '

structure for low growth rate or near the stability limit of the

planar interface. If the orientation of the interface tension is dc

different from that of the temperature gradient, the two tip- vn(€L=Cs)= D7 (1)
stabilizing mechanisms may compete and lead to the tilting

of the periodic structure. This phenomenon is actually ob-

served by Akamatsat al. by solving the time-dependent dif- Here v,, is the normal growth rate anB. is a chemical

fusion equation on multiple latticds’]. Here we study the diffusion constant.
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When the solid is in equilibrium with the liquid with con- Herely=2D./V is the diffusion length. In the last equality
centrationc, , the interface temperatui®; should be lower we use the quasistationary approximation such that the dif-

than the melting temperature of the pure sysfBmas fusion field relaxes quickly compared to the interface defor-
~ mation.
Ts=Tu(1—yx)—mc,, ) The angle¢ of the crystal profile may differ from the

angle ¢ of the crystalline axis. When the thermal gradient
provides the anisotropy necessary for the tip stability of the

Due to the fast thermal diffusion, the temperature gradien ellular structure, the anglé would be small. When, on the
Gr=dT/dzis well approximated to be constant and the tem- ther hand, the surface free energy dominates, the afgle

L would be close tay. We study the variation of the angte
perature profile is linear as : .
as a function of the pulling rat¥.
mc., Numerical simulation follows the previous boundary ele-
T(z):TM—T+GTz. 3 ment procedurd11,12. The diffusion equation is trans-
formed in the integro-differential equation of the interface
The origin of thez axis is so chosen to lie at the position of I' by means of the Green’s theorem as
the planar interface. The concentration at the interface au(r’)
z={(x) is thus determined from Eg&2) and(3) as f drfg(r,rf)ﬁ_n:f dI’h(r,r")us(r’). (9)

with the surface stiffness, the curvaturec, and the slope of
the liquid linem.

CL:?_ —k——{. 4 Hereg is the Green’s function of the operatf)? adjoint to
L, defined in Eq(8) as
We normalize the field by the miscibility gap

— 1Y ; i - 2 d 20
Ac=c.(1k—1) in the dimensionless form as [tg=v2g— —tan¢—g— £9_ sr—r").  (10)
Io ax lp dz
_Coo
u(x,zt)=——- G Jtis explicitly written as
The far field condition isu(z—«)=0. The diffusion equa- n_ = B i P
tions with boundary conditions at the interface are now writ- g(r,r’)= 27" Io (Az+Axtang) Ko Ipcosp)’
ten as (11
u 2 with Az=z—27', Ax=x—x', p=+(Ax)?’+(Az)?, andK,
E‘DCV u, (63 being the modified Bessel function of zeroth order. The in-
tegral kerneh is given as
us=1—dK—£, (6b) ag 2 1
Iy h(r,r')=————[n,+njtanglg(r—r')— = 8(r—r’).
an’ lp 2
Ju (12
[k+(1-Kuslvy=—D¢—. (60 . - . L s
an When the interface becomes periodic with periodieity

it is sufficient to consider one period. By discretizing this one
period withN grid points, the integral equatia®) is trans-
formed into the matrix form as

Here d=Tyy/mAc is the capillary length and
[+=mAc/G+ is the thermal length.

When the stiffnes is the smallest in the direction, the
array is symmetric around theaxis. But when the crystal- © N © N
line axis is off from the pulling direction, the crystal profile > 2 Girmdi= > 2 HijsmaYj, (13
may tilt. Assume that the stiffnesgis minimum in the ori- m=-—« =1 m=—c j=1
entation with the angley from thez axis, then the capillary

length takes the form wherem denotes the periodic images of the interface in con-

sideration. Hereu; and g; are the values of diffusion field

d=do[1— acos4 6— )] (7) and its normal gradient at the interface on flie grid point

and the matrixG andH are obtained by the integration of

for an interface with its normal vector making an angléo g andh on a segment. The detailed procedure is described in
the z axis. Here we assume fourfold symmetry in the surfaceprevious workg11,13.
tension. As a result, the crystal tilts with an angleand the For a given profilez= {(x,t) under the given pulling rate
interface deformation drifts transversally with the velocity V and the tilt angle$, we can calculaté&s andH and also
vy=Vtang. In the frame moving with the same velocity the interface values af; from the local equilibrium condi-
v=(v,,V) with the growth front, the diffusion equation is tion Eq.(6b). Then the matrix equatiofl3) is solved to give

written as the gradientg=du/dn, which determines the local velocity
of the interface from the conservation condition Efc).
f = Etanq&a—u L2 V2 1du _0. (g [Iheinterface is advanced accordingly o a new profile. For a
Io ax lp oz D, dt ' directional solidification, the pulling raté in the z direction
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FIG. 1. Time evolution of a symmetric pattern of an interface
with a crystalline axis oriented to the pulling directisnThe pull- . .
ing velocity isV/V.=6.72. (b)
. . 250 L ]
is controlled externally. The transversal velocity
v,=Vtang, on the other hand, should be determined self- o
consistently. 20" 1 iy
We start the simulation by supposing that the frame has
some transversal velocitytang. After some time of simu- 50

lation the interface tilts and the tip of the cellular pattern
acquires some transversal velocity. The tip here means th@
interface position with the maximum curvature near the top- 10°
most part. Since the tip is fluctuating in every time step due

to the discreteness of grids and the inaccuracy of numerical 5°
integration, we define the tilt angle of the i, in a coarse-

grained sense. It is defined from the slope of two consecutive

tip positions after a sufficiently long time interveit: 0°

ytrdy—y(t)
Fup=tan i Tx(D)

0 5 10
t

FIG. 2. (&) Initial transient of the time evolution of a tilted
Then the angle of the moving frame is relaxed i, as  crystal with the line representing the tip trajectory. The crystalline
axis is orientedy=17° off from thez axis, whereas the profile tilts
dt only ¢=8.8°. The pulling rate i&/V.=3.50. (b) Temporal relax-
P(t+dt)= (1) - ?[ $(1) — dpl, (19 ation of the tilt anglep of the frame that is related to the transversal
velocity v,=Vtang of the moving frame.

(14

with the appropriate relaxation time[14]. In the stationary _ . . _
state in which we are interested, tilt angleshould remain  The anisotropy in the surface stiffness is assumed to be

constant and |t agrees Witbtip . a=01 The Critical grOWth rate iS CaICUIated to be
V.= 1.14, with the critical wavelength,=27/q.=0.5. The
IIl. SIMULATION RESULTS simulated system is assumed to have periodicity0.36, as

was done previouslyl1]. In fact, in the previous simulation
We have chosen the same parameter sets that have bege assumed that the interface takes an array of symmetric
used previously to simulate steel with impurities of Cr andfingers and mirror images are imposed at both boundaries to
Ni [11,13. The equilibrium segregation coefficient is simulate only a half period to save CPU time. In the present
k=0.9. The length and time units are chosen such that thesimulation we want to realize tilted fingers and the whole
thermal length is unity+=1 and the chemical diffusivity is period is necessary with periodic boundary conditions.
unity D,=1. The capillary length is thed,=2.95x 10 *. Starting from a sinusoidally modulated interface, we first
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FIG. 3. Steady profile of the interface at various velocities
VIV.: (a) 1.75,(b) 3.50,(c) 6.72,(d) 10.5, and(e) 17.5. The crys-
talline axis is oriented t@/=17°. The tip tilts to an anglé as(a)
4.3° (b) 8.8°, (c) 12.6°, (d) 15.2°, and(e) 16.9°.

X

simulate the symmetric finger with a crystalline axis lying the simulation of the tilted finger.
parallel to the pulling directiony=0. The profile of the pre-
vious simulations is reproduced even with the different
boundary conditions. Figure 1 shows an example of the time ) ) _ o o
development of cuspate fingers fgfV.=6.72. In the fol- The orientationys of the crystalline axis with the mini-
lowing figures we show two periods of the profile. The maxi-mum surface stiffness is fixed to a constant value
mum grid spacing along the interface is chosen to bef=0.30rad=17°. We vary the pulling rat¥ and observed
dma=0.03, small enough compared to the tip radiusthe tilting of the interface profile. The initial transversal ve-
p=0.12. From the final configuration of this finger, we startlocity v,= Vtang of the moving frame is given by = ¢, but

A. Tilt angle at various pulling rates
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V/Vc

FIG. 4. Ratio of the tilt anglep to the imposed crystalline tilting
¢ at various pulling rate¥/V,. The crystalline axis is oriented to
Yy=17°.

the angle¢ is gradually relaxed to the tilt angle of the tip
¢1ip by EQ.(15). By the insertion and rearrangement of mesh
points, a numerical fluctuation is induced locally, but on av-
erage the system reaches the steady state asymptotically at
all the pulling velocities studied, as shown in FigbR At &
low velocities, the tilt anglep of the crystal is smaller than X
the imposed anglé by the surface stiffness, as shown in the
profile evolution in Fig. 2a). The trajectory of the maximum FIG. 6. Steady profile of the interface at various orientations of
curvature point is almost parallel to the inclination of the the crystalline axista) ¢=37° and(b) y=45°. The pulling veloc-
narrow groove. Therefore, the tilt angle of the crystatan ity is fixed atV/V,=6.72.
be defined from the inclination of the groove in the steady-
state profile of the interface. The steady profiles of the interdeformation than those on the right-hand side. The asymme-
face at different velocities are depicted in Fig. 3. On increastry results because the left-hand side of the tip faces the open
ing the velocity, fingers tilt steeper with stronger space and the diffusion field in front is expected to vary
asymmetries in the sidebranch structures: When the dendrifguch, whereas the right-hand side is shielded by the tip itself
tilts to the right, branches on the left-hand side have a largesnd the diffusion field varies little. The noise amplification
should thus be larger on the left-hand side than on the right.
o The tilt angle ¢ varies as a function of the pulling rate
30 ' V, as shown in Fig. 4. Near, it increases almost paraboli-
cally to the velocity difference from the critical value
V-V, and at a large pulling rate it reaches the orientation of
the crystalline axisy. Usually, large tilting at the large pull-
20° + O 1 ing rate is interpreted as evidence of the kinetic mechanism
O O for tilting. The present simulation shows that the surface free
¢ energy brings the same tendency thaincreases withv.

(CCC O s s o
C

7\

_\lg , O O . , , N
(l)_ B. Tilt angle for various crystalline orientation

10° .
We now fix the pulling rate aV/V.=6.72 and vary the
O tilting of the crystalline axisy. The tilt angle¢ of the profile
is shown in Fig. 5 as a function af. At small ¢, ¢ is
. . . almost linearly proportional t@, but soon the anglé be-
0° 15° 30° 4%0 comes smaller thagr because the transversal motion of the
primary dendrite is suppressed by the neighboring dendrite.
l// Increasingy further, the sidebranches of the next dendrite
prevent the transversal shift of the primary dendrite, as

FIG. 5. Tilt angle¢ at various crystalline orientationg. The  shown in Fig. a), and ¢ decreases. Near the angle
pulling velocity is fixed toV/V,=6.72. Y= ml4, the randomness of the sidebranch formation leads

OO



54 SIMULATION OF UNIDIRECTIONAL SOLIDIFICATION WITH . .. 655

the irregular meandering of the position of the maximumdirection different from the pulling direction. The tilt angle
curvature and the tilt anglep is not well defined. At ¢ is shown to become large on increasing the pulling rate
= ml4=45°, the interface normal to thedirection splitsto  V, in agreement with the experimental observatjér-8].

the left and right fingers, but both interfere strongly in our There are, however, some aspects different from the experi-
small system and their tips split again irregularly, as showrment. In the ice experiment, the tilt angtedepends weakly

in Fig. 6(b). Thus the system consists of an irregular arrangeen ¢ compared with our simulation for smaft [8]. These
ment of double fingers with very narrow grooves. A similar discrepancies may be related to the kinetic effect, which is
pattern was already obtained by Akamaé&tal. [7]. planned to be studied in a separate paper.

IV. CONCLUSIONS AND DISCUSSION
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